Pharmacokinetic and Pharmacodynamic Characterization of ALX148, a CD47 Blocker, in Patients with Advanced Malignancy and Non-Hodgkin Lymphoma

Feng Jin¹, Nehal Lakhani², Patricia LoRusso³, Laura Q Chow⁴, Wells Messersmith⁵, Yung-Jue Bang⁶, Justin Gainor⁷, Jeeyun Lee⁸, Hyun Chung⁹, Keun-Wook Lee¹⁰, Stephen Hodi¹¹, Sangeetha Bollini¹, Laura Doyle¹, Steven Kauder^{1*}, Philip Fanning¹, Jaume Pons¹, Sophia Randolph¹, Hong Wan¹

¹ALX Oncology, Burlingame, CA, USA and Dublin, Ireland; ²START Midwest, Grand Rapids, MI, USA; ³Yale Cancer Center, New Haven, CT, USA; ⁴Seattle Cancer ⁷Massachusetts General Hospital Cancer Center, Boston, CA, USA; ⁸Samsung Medical Center, Seoul, South Korea; ⁹Yonsei Cancer Center, Boston, MA, USA; ⁸Samsung Medical Center, Seoul, South Korea; ⁹Yonsei Cancer Center, Seoul, South Korea; ¹⁰Seoul National University Bundang Hospital, Seongnam, South Korea; ¹⁰Seoul National University Bundang Hospital, Seoul National University Bundang Hospital, Seongnam, South Korea; ¹⁰Seoul National University Bundang Hospital, Seongnam, Seoul, Seongnam, Seoul, Seongnam, Seoul, Seongnam, Seoul, Seongnam, Seoul, Seongnam, Seoul, Seongnam, Seongnam *Employeed at ALX Oncology at the time this work was conducted.

Background

- CD47, a marker of self, is upregulated by tumors to evade the immune system. CD47-SIRP α signaling represents a myeloid checkpoint mechanism in cancer.¹
- ALX148 is a fusion protein comprised of an engineered high affinity CD47 binding domain of SIRP α genetically linked to an inactive Fc region of human immunoglobulin (Figure 1).²
- In non clinical models, ALX148 blocks CD47 and safely enhances the activity of several anti-cancer targeted antibodies and checkpoint inhibitors through Fc dependent and independent mechanisms, bridging innate and adaptive anti-cancer immune response.²
- AT148001 (NCT03013218), a first-in-human Phase 1 study evaluates ALX148 administered as a single agent (Part 1) and in combination with established anti-cancer antibodies (Part 2).^{3,4}

ALX148 Potential for Best in Class: Potency and Safety

• Potently and selectively binds CD47 High Affinity CD47 Binding Domains of SIRPα to block its interaction with SIRP α .

PK/PD Analysis Methods

- Human PK and PD analytical methods:
- PK bioanalytical method: ALX 148 serum concentrations were analyzed using a validated ligand binding ELISA.
- PD (target occupancy-TO) assay: CD47 TO in peripheral blood
- T lymphocytes and erythrocytes was measured by a flow cytometry assay.
- Mouse PK and PD methods:
- A single dose of ALX148 was administered via intraperitoneal injection in BALB/c mice implanted subcutaneously with CT26-M/H HER2 tumor cells.
- At 1, 4, or 8 days after administration of ALX148, mice were euthanized; blood, spleen and tumors were removed for serum PK and CD47 TO assays.
- ALX148 serum levels were measured using a ligand binding ELISA and CD47 TO on CD4+ T cells and HER2+ tumor cells was determined by a flow cytometry assay using labeled ALX148.
- PK and PD data analysis methods:

• Noncompartmental analysis (NCA) was performed using Phoenix WinNonlin (v8.0 Certara USA, Inc., Princeton, NJ).

Table 3. ALX148 PK Parameters Following IV Infusion (10 mg/kg) at Cycle 1 Day 1 as Monotherapy or Combination Therapies

Parameters	Cohort 4 (10 mg/kg QW) N=3	Pembrolizumab Combo (10 mg/kg QW) N=12	Trastuzumab Combo (10 mg/kg QW) N=8
Cmax (µg/mL)	247 ± 32.5	232 ± 61.9	237 ± 78.2
AUCinf (µg*h/mL)	19700 ± 4940	18500 ± 6710	17700 ± 6880
CL (mL/h/kg)	0.53 ± 0.12	0.60 ± 0.20	0.63 ± 0.22
Vss (mL/kg)	60 ± 7.6	73 ± 21	72 ± 20

- ALX148 PK profiles showed a trend of non-linear PK with faster clearance at lower doses and slower clearance at higher doses of 10 mg/kg QW and 30 mg/kg QoW, indicating saturation of target mediated clearance.
- ALX148 PK profiles (10 mg/kg QW) in combination with pembrolizumab or trastuzumab were not changed from that of a single agent.

RBC

Pharmacodynamics

as Single Agent

Modeling Results: Representative PK and PD Fit **Individual Subject**

Figure 8. Representative Individual Fit vs Observed ALX148 PK Profiles

Figure 9. Representative Individual Fit vs Observed PD (CD4+) Profiles

• Picomolar binding affinity.

• Molecular weight is half the size of typical antibody allowing higher molar concentrations to be delivered to tumor.

• Fc domain is modified to eliminate binding to all Fc gamma receptors minimizing toxicity.

• Fc domain retains binding to the neonatal Fc receptor for pharmacokinetic half-life extension. • ALX148 binds CD47 from human,

Mechanism of Action

monkey, rat, and mouse.

Figure 2. ALX148 Bridges Innate and Adaptive Immunity Against Cancer²

ALX148 Blocks CD47 "Don't Eat Me" Signal and **Enhances Macrophage** Phagocytosis

ALX148 Increases the Ratio of Inflammatory M1 Tumor Associated Macrophages (TAMs) to Suppressive M2 TAMs

ALX148 Activates Dendritic Cells (DCs) and Enhances Cross-Priming of T Cells

Cancer Cell 🔶 Tumor Antigen 🛛 🔫 Anticancer Antibody ALX148 Fc Receptor

• Clinical population PK/PD modeling analysis was performed using

Inactive

NONMEM (v7.3, ICON Development Solutions, Hanover, MD). • Preclinical PK/PD modeling analysis was performed using ADAPT 5

(Biomedical Simulations Resource, University of Southern California, Los Angeles, CA).

PK/PD Modeling Methods

Fc Domain Figure 3. Schematic Diagram of ALX148 PK/PD Model

Periphera

Figure 1. ALX148 is an intravenously administered fusion protein.

/max. Km` Emax, EC50

PD (TO) signal. • PD data converted to % of baseline.

• ALX148 PK described by a two

compartment model with parallel

linear and nonlinear clearance.

• ALX148 PD effect described by

• Drug concentration in central

compartment inhibits input of

an indirect response model.

---- 0.3 mg/kg (N=3) 0 ----- 1 mg/kg (N=4) ------ 3 mg/kg (N=6) ----- 10 mg/kg (N=3) ----- 30 mg/kg (N=11) 28 42 56 70 112 126 84 98 Davs

Figure 6. TO-Time Profiles Following ALX148 IV Infusion

CD4+ T Cells 120 60 ---- 0.3 mg/kg (N=2) 0 ----- 1 mg/kg (N=4) ------ 3 mg/kg (N=6) ---- 10 mg/kg (N=3) ----- 30 mg/kg (N=12) 28 42 56 70 84 98 112 126 14

Figure 7. TO-Time Profiles Following ALX148 IV Infusion in Combination

Days

Modeling Results: PK and PD Fit Diagnostic Plots Figure 11. PD Fit Diagnostics Figure 10. PK Fit Diagnostics

DV – Observed value; PRED – Population prediction; IPRED – Individual prediction; CWRES – Conditional weighted residual

• Overall, the diagnostic plots indicated good agreement between observed vs model predicted PK and PD results.

Translational PK/PD Modeling Based on Data **Obtained in Tumor Bearing Mice**

Figure 12. CD47 Occupancy in Tumor Bearing Mice Following a Single Intraperitoneal Injection of ALX148 at 10 or 30 mg/kg*

*Anti-tumor efficacy and associated cellular changes in innate and adaptive immune response were observed with ALX148 (30 mg/kg) and anti-PD1 combination.²

Figure 13. Modeled PK and PD (TO on Tumor Cell) ALX148 PK Tumor Cell Occupancy 10 mg/kg 10 mg/kg 30 mg/kg 30 mg/kg — 10 mg/kg Fitted - 10 mg/kg Fitted - 30 mg/kg Fitted — 30 mg/kg Fitted

Results

ALX148 Concentration-Time Profiles

Figure 4. ALX148 Concentration-Time Profiles Following ALX148 IV Infusion as Single Agent

- To characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of ALX148 in patients with advanced solid tumors and lymphomas as a single agent and in combinations with pembrolizuab or trastuzumab.
- To conduct translational PK and PD modeling to estimate target occupancy (TO) in human tumors.

Methods

Study Design

Table 1. Study Design

Part 1: Single Agent ALX148

Cohort	Dose (mg/kg) Schedule	
1	0.3	Once a week
2	1.0	Once a week
3	3.0	Once a week
4	10.0	Once a week
5	30.0	Once every 2 weeks

Part 2: ALX148 (10 mg/kg QW) Combination Solid Tumor Cohorts

Dose Escalation	Advanced Solid Tumors (Each Combo)	Parar
	NSCLC (pembrolizumab); Progressed on Prior CPI/ PD-L1 <50%	
Dose Expansion	HNSCC (pembrolizumab); Progressed on Prior Platinum Therapy	— AUCi (μg*h
	Gastric/GEJ (trastuzumab); Progressed on Prior Fluoropyrimidine Therapy	(mL/h

Figure 5. ALX148 Concentration-Time Profiles Following ALX148 IV Infusion at 10 mg/kg QW as Single Agent or in Combination

• Pembrolizumab: 200mg IV Q3W. • Trastuzumab: 8 mg/kg IV followed by 6 mg/kg IV every Q3W.

ALX148 PK Parameters

Table 2. ALX148 PK Parameters Following IV Infusion at Cycle 1 Day 1 as Monotherapy

Parameters	Cohort 1 (0.3 mg/kg QW) N=2	Cohort 2 (1 mg/kg QW) N=4	Cohort 3 (3 mg/kg QW) N=6	Cohort 4 (10 mg/kg QW) N=3	Cohort 5 (30 mg/kg QoW) N=12
Cmax (µg/mL)	0.379 ± 0.192*	7.03 ± 2.17	54.5 ± 18.3	247 ± 32.5	701 ± 169
AUCinf (µg*h/mL)	N/A	48.5 ± 32.4	1830 ± 745	19700 ± 4940	101000 ± 31900
CL (mL/h/kg)	N/A	34 ± 31	1.9 ± 0.85	0.53 ± 0.12	0.33 ± 0.11
Vss (mL/kg)	N/A	150 ± 73	61 ± 19	60 ± 7.6	81 ± 20

* Reported for Cycle 2 day 1, Cmax at Cycle 1 day 1 were all BQL

CD4+ T Cells 120 100 60 0 — 10 mg/kg + Pembrolizumab (N=37) ---- 10 mg/kg + Transtuzumab (N=15) ----- 10 mg/kg (N=3) 56 84 112 126 140 154 168 28 42 70 98 Days

- CD47 Target Occupancy (Cohorts 1-5): Near complete occupancy by ALX148 is maintained at \geq 3 mg/kg QW.
- At 10 mg/kg, pharmacodynamic responses were comparable when ALX148 was given as monotherapy or in combination with pembrolizumab or trastuzumab.

Conclusions

• ALX148 exhibited clinical PK properties typical of antibody therapeutics directed towards cell-surface targets.

• ALX148 PK approached linear range and maintained complete peripheral TO over the dosing interval at \geq 3 mg/kg QW.

• PK/PD modeling revealed a trend of potency shift for TO from peripheral blood to tumor cells. The magnitude of this shift was assumed and used to simulate human tumor TO based on human peripheral blood TO.

PK Simulation

Figure 14. PK Simulation Based on Human Data Fitted Parameter

• Based on PK modeling, steady-state half-life of ALX148 at 10 mg/kg QW is predicted to be ~16 days.

• Tissue/tumor TO >70%, >80% and >90% were projected to be maintained at 3 mg/kg QW, 10 mg/kg QoW and 10 mg/kg QW in patients over the dosing interval, respectively.

Acknowledgements We would like to thank all of the participating patients and their families as well as site research staff. Contact email: info@alxoncology.com

Presented at the 33rd Annual Meeting of the Society for Immunotherapy of Cancer (SITC), Washington, D.C., USA, Nov 7-11, 2018.

• Initial data suggests ALX148 PK and PD profiles are not impacted by combination drugs.